Integration with Existing Services
You can easily integrate your Unit into your existing services using the SDK or the python client.
1. Direct API Integration
Python
const ReiCoreSdk = require("reicore-sdk");
// Initialize the SDK
const secretKey = "your_unit_secret_token";
const reiAgent = new ReiCoreSdk({ agentSecretKey: secretKey });
// Simple integration example
async function getAgentResponse(query) {
try {
const payload = {
messages: [
{
role: "user",
content: query,
},
],
};
const response = await reiAgent.chatCompletion(payload);
return response;
} catch (error) {
console.error("Error:", error);
return null;
}
}
// Example usage in an Express service
const express = require("express");
const app = express();
app.use(express.json());
app.post("/query", async (req, res) => {
try {
const response = await getAgentResponse(req.body.text);
if (!response) {
return res.status(500).json({ error: "Failed to get response" });
}
res.json({ response });
} catch (error) {
res.status(500).json({ error: error.message });
}
});
from reicore_sdk import ReiCoreSdk
# Initialize the client
rei_agent = ReiCoreSdk("your_unit_secret_token")
# Simple integration example
def get_agent_response(query):
try:
payload = {
"messages": [
{
"role": "user",
"content": query
}
]
}
response = rei_agent.chat.completion(payload)
return response["choices"][0]["message"]["content"]
except Exception as e:
print(f"Error: {e}")
return None
# Example usage in a web service
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
app = FastAPI()
class Query(BaseModel):
text: str
@app.post("/query")
async def process_query(query: Query):
response = get_agent_response(query.text)
if response is None:
raise HTTPException(status_code=500, detail="Failed to get response")
return {"response": response}
2. Webhook Integration
Setting up a Webhook Endpoint
from flask import Flask, request, jsonify
from reicore_sdk import ReiCoreSdk
app = Flask(__name__)
rei_agent = ReiCoreSdk("your_unit_secret_token")
@app.route('/webhook', methods=['POST'])
async def webhook_handler():
data = request.json
query = data.get('query')
if not query:
return jsonify({"error": "No query provided"}), 400
try:
response = rei_agent.chat.completion(
{
"messages": [
{
"role": "user",
"content": query
}
]
}
)
return jsonify({
"response": response["choices"][0]["message"]["content"]
})
except Exception as e:
return jsonify({"error": str(e)}), 500
3. Message Queue Integration
Using RabbitMQ
import pika
from reicore_sdk import ReiCoreSdk
import json
# Initialize the client
rei_agent = ReiCoreSdk("your_unit_secret_token")
# Set up RabbitMQ connection
connection = pika.BlockingConnection(
pika.ConnectionParameters('localhost')
)
channel = connection.channel()
# Declare queue
channel.queue_declare(queue='rei_agent_queue')
def process_message(ch, method, properties, body):
try:
data = json.loads(body)
query = data.get('query')
# Get response from Rei Agent
response = rei_agent.chat.completion({
"messages": [
{
"role": "user",
"content": query
}
]
})
# Send response back
ch.basic_publish(
exchange='',
routing_key=properties.reply_to,
body=json.dumps({
"response": response["choices"][0]["message"]["content"]
})
)
except Exception as e:
ch.basic_publish(
exchange='',
routing_key=properties.reply_to,
body=json.dumps({"error": str(e)})
)
# Start consuming
channel.basic_consume(
queue='rei_agent_queue',
on_message_callback=process_message,
auto_ack=True
)
channel.start_consuming()
4. Database Integration
Using PostgreSQL
import psycopg2
from reicore_sdk import ReiCoreSdk
import json
# Initialize the client
rei_agent = ReiCoreSdk("your_unit_secret_token")
def store_and_process_query(query, user_id):
try:
# Connect to database
conn = psycopg2.connect("dbname=your_db user=your_user password=your_password")
cur = conn.cursor()
# Get response from Rei Agent
response = rei_agent.chat.completion({
"messages": [
{
"role": "user",
"content": query
}
]
})
# Store query and response
cur.execute("""
INSERT INTO queries (user_id, query, response, created_at)
VALUES (%s, %s, %s, NOW())
""", (user_id, query, response.choices[0].message.content))
conn.commit()
return response["choices"][0]["message"]["content"]
except Exception as e:
print(f"Error: {e}")
return None
finally:
if 'cur' in locals():
cur.close()
if 'conn' in locals():
conn.close()
5. Microservice Integration
Using Docker and FastAPI
# Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
# main.py
from fastapi import FastAPI, HTTPException
from reicore_sdk import ReiCoreSdk
from pydantic import BaseModel
import uvicorn
import json
app = FastAPI()
rei_agent = ReiCoreSdk("your_unit_secret_token")
class Query(BaseModel):
text: str
context: dict = {}
@app.post("/process")
async def process_query(query: Query):
try:
response = rei_agent.chat.completion({
"messages": [
{ "role": "system", "content": json.dumps(query.context) },
{ "role": "user", "content": query.text }
]
})
return {"response": response["choices"][0]["message"]["content"]}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
Last updated