Custom Tools
Following the Function Calling schema, you can develop your own tools and functions and give your Unit access to them - as you'd do with a regular model - making the Unit forms usage memories with them.
The only actual limitation is that those tools are only in your code: outside of it, the Unit will still have memories of them but it will be impossible for it to recall the tools, leading to possible weird behavior.
Solution: Once you plug an Unit in your code, try to use it only there, especially if there it has access to specific functions not available in the Factory.
We're currently testing a couple of solutions to let users define Custom Tools directly in the factory and an update will soon come together with a Vault System where you can safely store your data and keys without compromising opsec.
Custom Tools Quickstart
const ReiCoreSdk = require('reicore-sdk');
// Initialize the SDK
const apiKey = 'your_unit_secret_token';
const reiAgent = new ReiCoreSdk({ agentSecretKey: apiKey });
// Define your custom functions
const getWeather = (location) => {
// Implement your weather API call here
return `Weather in ${location}: Sunny, 22°C`;
};
const searchDatabase = (query) => {
// Implement your database search here
return `Found 3 results for: ${query}`;
};
// Define function schemas
const functions = [
{
name: "get_weather",
description: "Get the current weather for a location",
parameters: {
type: "object",
properties: {
location: {
type: "string",
description: "The city and state, e.g. San Francisco, CA"
}
},
required: ["location"]
}
},
{
name: "search_database",
description: "Search the database for specific information",
parameters: {
type: "object",
properties: {
query: {
type: "string",
description: "The search query"
}
},
required: ["query"]
}
}
];
// Function mapping
const functionMap = {
get_weather: getWeather,
search_database: searchDatabase
};
async function processWithFunctions(query) {
try {
// First call to get function details
const response = await reiAgent.chatCompletions(query, { functions });
const message = response.choices[0].message;
// Check if the agent wants to call a function
if (message.function_call) {
const functionName = message.function_call.name;
const functionArgs = JSON.parse(message.function_call.arguments);
// Call the function
const functionResponse = functionMap[functionName](...Object.values(functionArgs));
// Send the function response back to the agent
const secondResponse = await reiAgent.chatCompletions([
{ role: "user", content: query },
{ role: "function", name: functionName, content: functionResponse }
], { functions });
return secondResponse.choices[0].message.content;
}
return message.content;
} catch (error) {
console.error('Error:', error);
return null;
}
}
// Example usage
processWithFunctions("What's the weather in Tokyo?")
.then(response => console.log(response))
.catch(error => console.error(error));
from client import Client
import json
# Initialize the client
client = Client(
api_key="your_unit_secret_token",
base_url="https://api.reisearch.box"
)
# Define your custom functions
def get_weather(location: str) -> str:
# Implement your weather API call here
return f"Weather in {location}: Sunny, 22°C"
def search_database(query: str) -> str:
# Implement your database search here
return f"Found 3 results for: {query}"
# Define function schemas
functions = [
{
"name": "get_weather",
"description": "Get the current weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
}
},
"required": ["location"]
}
},
{
"name": "search_database",
"description": "Search the database for specific information",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query"
}
},
"required": ["query"]
}
}
]
# Function mapping
function_map = {
"get_weather": get_weather,
"search_database": search_database
}
def process_with_functions(query: str):
try:
# First call to get function details
response = client.chat.completions.create(
model="Unit01",
messages=[{"role": "user", "content": query}],
functions=functions
)
message = response.choices[0].message
# Check if the agent wants to call a function
if message.function_call:
function_name = message.function_call.name
function_args = json.loads(message.function_call.arguments)
# Call the function
function_response = function_map[function_name](**function_args)
# Send the function response back to the agent
second_response = client.chat.completions.create(
model="Unit01",
messages=[
{"role": "user", "content": query},
{"role": "function", "name": function_name, "content": function_response}
],
functions=functions
)
return second_response.choices[0].message.content
return message.content
except Exception as e:
print(f"Error: {e}")
return None
# Example usage
response = process_with_functions("What's the weather in Tokyo?")
print(response)
Advanced Custom Tools
Multiple Function Calls
def process_with_multiple_functions(query: str):
try:
messages = [{"role": "user", "content": query}]
while True:
response = client.chat.completions.create(
model="Unit01",
messages=messages,
functions=functions
)
message = response.choices[0].message
if not message.function_call:
return message.content
# Add the function call to messages
messages.append({
"role": "assistant",
"content": None,
"function_call": {
"name": message.function_call.name,
"arguments": message.function_call.arguments
}
})
# Call the function
function_name = message.function_call.name
function_args = json.loads(message.function_call.arguments)
function_response = function_map[function_name](**function_args)
# Add the function response to messages
messages.append({
"role": "function",
"name": function_name,
"content": function_response
})
except Exception as e:
print(f"Error: {e}")
return None
Function Calling with Context
def process_with_context(query: str, context: dict):
try:
# Add context to the system message
system_message = {
"role": "system",
"content": json.dumps(context)
}
response = client.chat.completions.create(
model="Unit01",
messages=[
system_message,
{"role": "user", "content": query}
],
functions=functions
)
# Process function calls as before
message = response.choices[0].message
if message.function_call:
function_name = message.function_call.name
function_args = json.loads(message.function_call.arguments)
function_response = function_map[function_name](**function_args)
second_response = client.chat.completions.create(
model="Unit01",
messages=[
system_message,
{"role": "user", "content": query},
{"role": "function", "name": function_name, "content": function_response}
],
functions=functions
)
return second_response.choices[0].message.content
return message.content
except Exception as e:
print(f"Error: {e}")
return None
Last updated