0xReisearch
  • //Welcome
  • //notions
    • Intro
  • //Core
    • Evolution
  • Catalog
    • //hanabi-1
  • //Factory & Core API/SDK (Cross-Framework)
    • Reigent Factory
      • Factory V 0.4.0 Overview
    • How to get your API key
    • API reference
      • GET Reigent
      • Chat Completion
    • ReiCore SDK
      • Integration with Existing Agents
      • Integration with Existing Services
    • Additional Capability (Provided & Custom)
      • DeFi (Current Level : 1)
      • Research
      • Custom Tools
  • Tokenomics
  • API/SDK v0.5 Model - A Base Layer For all Agents
  • /legacy
Powered by GitBook
On this page
  1. //Factory & Core API/SDK (Cross-Framework)
  2. ReiCore SDK

Integration with Existing Agents

Your Unit can be easily integrated with other AI systems through function calling. Here's how to do it:

const ReiCoreSdk = require('reicore-sdk');

const apiKey = 'your_unit_secret_token';
const reiAgent = new ReiCoreSdk({ agentSecretKey: apiKey });

// Example function to query Rei Agent
async function queryReiAgent(message) {
    try {
        const response = await reiAgent.chatCompletions(message);
        return response;
    } catch (error) {
        console.error('Error querying Rei Agent:', error);
        return null;
    }
}

// Example usage in your agent
async function yourAgentFunction() {
    // Your agent's logic here
    const query = "What are the latest developments in quantum computing?";
    const reiResponse = await queryReiAgent(query);
    // Process the response
}
from client import Client

client = Client(
    api_key="your_unit_secret_token",
    base_url="https://api.reisearch.box"
)

# Example function to query Rei Agent
def query_rei_agent(message):
    try:
        response = client.chat.completions.create(
            model="Unit01",
            messages=[
                {"role": "user", "content": message}
            ],
            functions=[{
                "name": "query_rei_agent",
                "description": "Query the Rei Agent for information or assistance",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {
                            "type": "string",
                            "description": "The query to send to the Rei Agent"
                        }
                    },
                    "required": ["query"]
                }
            }]
        )
        return response.choices[0].message.content
    except Exception as e:
        print(f"Error querying Rei Agent: {e}")
        return None

# Example usage in your agent
def your_agent_function():
    # Your agent's logic here
    query = "What are the latest developments in quantum computing?"
    rei_response = query_rei_agent(query)
    # Process the response

Example integration with OpenAI

from openai import OpenAI
from client import Client as ReiClient

# Initialize both clients
openai_client = OpenAI(api_key="your_openai_key")
rei_client = ReiClient(api_key="your_unit_secret_token")

def hybrid_agent_query(query):
    # First, get context from OpenAI
    openai_response = openai_client.chat.completions.create(
        model="gpt-4o",
        messages=[{"role": "user", "content": query}]
    )
    
    # Then, enhance with Rei Agent's specialized knowledge
    rei_response = rei_client.chat.completions.create(
        model="Unit01",
        messages=[
            {"role": "user", "content": query},
            {"role": "assistant", "content": openai_response.choices[0].message.content}
        ]
    )
    
    return rei_response.choices[0].message.content

Integrating a Unit as a counselor for common LLMs models allows the seamless integration of memories: simply passing the query and asking for more details unlocks memory without having to code message loops.

PreviousReiCore SDKNextIntegration with Existing Services

Last updated 1 month ago